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REGULARITY OF NONLINEAR FLOWS ON MANIFOLDS: NONLINEAR
ESTIMATES ON NEW TYPE VARIATION OR WHY GENERALIZATIONS
OF CLASSICAL COVARIANT DERIVATIVES ARE REQUIRED?

The correct approach to the regularity parabolic problems on manifolds requires the study of dependence
between the coefficients of equation and geometric characteristics of manifold, like curvature.

We demonstrate that the geometrically correct work with the nonlinear differential flow on manifold
leads to the introduction of a new type variations with respect to the initial data. They are defined via a
natural generalization of covariant Riemannian derivative to the case of diffeomorphisms.

Using these variations we find how the curvature manifests in the structure of high order variational
equations and determine a set of a priori nonlinear estimates on any order regularity. In particular, we derive
the regular properties of corresponding solutions to parabolic equations on non-compact manifolds with the
growing on infinity coefficients.

This paper develops results of [2]-|7] to the manifold case.

1. Invariant representations of semigroups derivatives: statement of problem.

For simplicity, let us consider a second order parabolic equation

Ere st ) = Lailt &), 2 af0,2) = fz) (1)

on noncompact connected oriented smooth Riemannian manifold M without boundary. The
second order differential operator

Lf=Af +3 3 Aa(4af). 2)

is expressed in terms of smooth vector fields Ay, A,, o = 1,....d, d = dimM, globally
defined on M.
Equation (1) is related with Stratonovich diffusion

t d t
= ek f Ao(ys)ds + Z/ A (y5)oWe, e M (3)

via Kolmogorov representation of corresponding diffusion semigroup

u(t, z) = (Puf)(z) = Ef (y;) (4)

Traditionally equation (3) is understood in a sense that for any smooth function with
compact support f € C2(M) the following equation

t d t
167 = 1@+ [ Capuds++ 3 [ (Aan))oWe (5)
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holds as usual equation in R', W2 denotes the standard IR%-valued Wiener process. In
particular, one can take functions f'(z) = 2’ to be local coordinates to find the consistent
family of local stochastic equations.

In this talk we are going to find how the properties of nonlinear diffusion 4, and drift 4,
coefficients should be related with the geometric properties of manifold to lead to the smooth
properties of diffusion semigroup (4) and to the regular dependence of process y¥ on initial
data. We remark, that henceforth we use the uncommon notation yi for the diffusion process
instead of traditional Greek letters, because in this article we develop purely nonstochastic
methods, that are still valid for the case of ordinary differential equations (i.e. when diffusion
coefficients 4, = 0).

By Kolmogorov representation (4) we have to find the geometrically invariant representa-
tions for semigroups derivatives in terms of some invariant (and still not introduced) deriva-
tives of process y7 with respect to the initial data.

Taking formally the first order derivative of (4) we find

Bf(y ) O(y; )”” o)™
Nelh = ——IE] : = EVY 3 : 6
Due to the properties of Jacobians, the above representation is invariant with respect to the
local coordinate transformations (x ) — (2'). Moreover, the similar arguments demonstrate
oy )™

that the first order variation z
s

of diffusion with respect to the initial data represents

e covector field on index k with respect to coordinate transformations in the vicinity of
initial data (z) — (')

e vector field on index m with respect to the choice of local coordinate vicinity for
diffusion (y) — (v').

Representation (6) relates the first order covariant derivatives of function with the
covariant derivatives of its evolution, i.e. provides natural tools for the study of the first
order regularity problems.

Turning to the higher order differentiability of diffusion semigroup P, we have to define
the higher order variations of process y7. The attempt to write classical covariant derivatives
of the first order variation _

1 - a:}:kl
would be naive. Though they are invariant with respect to the local coordinates transfor-
mations (z) — (z'), the property, that first order variation is a vector field on index m
with respect to transformations (y) — (y'), will be destroyed. There will inevitably arise

derivatives on variable z of Jacobians %——ﬂ))—) of coordinate changes (y) — (3'). Recall
that the covariant derivative of a tensor ﬁeld1 is defined in a standard way
1l 11, wiipliz =t 11, ot
viujlv"vj?; Jl‘ th? + ZF Jl, s..::' Zrk J5(x) Ty Jq'|35 = (7)
1y !?'pli‘g—f

P means substitution of index i; by ¢, the summation on repeating indexes is
implemented, and I'(x) denote the connection coefficients.
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To find the high order representations of semigroup derivatives we may directly write
the second order covariant derivative of semigroup

a 9 %, %, 9
ViViPf(z) = T r&'hlj(x)@}Ptf {8 %57 (-T) }f(yf

of(y) *y™  8*f(y) dy™oy" n o, Of(y) Oy™
{ dy™ dxkdxi it dymAy" Ozt Oyi 2 oy™ Ozt

0
and form the covariant derivatives of f in the r.h.s., using that V{f(y) = oy f(y) and

Jd 0 ; 0
: -rt — . Wi
BVAF0) = G 5o F0) = T e f(9). We find
Y Y £ aym ay
VAP (z) = B (VA VAF() + T ) VEF () TV, ®
a2ym aym
y PRy E =3l
+me(y)( 8$k8Ij rk 3(1’) axh ) }
aym ayn 6?ym 4 aym ayﬁ' 8yn
= URve) v S i W ok O St
E{vanf( )8 k a . +¥ f( )(atk@:ﬂ k_j("r) Azl +rf n(y)ax_; i } (9)
The first term VYV f . %% is obviously invariant under transformations (z) — (z)
and (y) — (y'). However arises a problem of terms in brackets
aﬁym h aym m ay[’ ayn 2
oorow ki g t T W (10)

Traditional approach to treat these terms is to form the covariant derivative on x variable
form first and second terms

: oy™ Ayt oy"
e &t e T
(10) = | 1* way | = Vi( e )+ (y )3 o

Such representation is obviously invariant with respect to transformations (z) — ().

We remark that the third term with connection I'(y) has transformation of coordinates
law, that includes the second order derivatives of coordinate change, similar to Ito formula,
and seems to compensate the influence of stochastics. However, our considerations also hold
for the case of ordinary differential equations (4, = 0). Therefore in further research we do
not follow the stochastic arguments.

It is not clear, whether representation (11) is invariant with respect to the coordinate
changes (y) — (y') for process y;. Let us work with (10) in other way, by collecting first and
third terms together

(11)

B | e O OY

(10) = |2 way| = - k(axi') L@ gr + TR W) r 37 =

dy' 9 oy" hod o dyt oy"
6‘3"‘81(613) F“(')ah’q‘-’ Ua kBgi
By h ym
3£k ori ) rk j( ) (12)
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0 0
where we used that e ai; Byt
with respect to the coordinate changes y) = (V).

This representation, in comparison to (11), is invariant

We come to the conclusion that all terms in (10) define a second variation of process y}
and represent

e vector field on index m with respect to the "Ito"changes of coordinates (y) — (y')

e twice covariant field on indexes k,j with respect to the "diff.geometric"changes of
coordinates () — (z)

Because the arguments above also work for the choice 4, = 0, i.e. in the ordinary differential
equations case, when no stochastics appear at all, the introduction of high order variation is
a pure question of differential geometry.

If one knows how to define the second order variation then its high order analogies could
be easily written.

DEFINITION 1. High order variations W2y, v = {ki,....ky}, of process yf are defined by
recurrent relations

a' €Ty

oz* '
x . m T T, m m{, .z T payq
Vie(W3y™) = VR(Wy™) + L7 (4F) Voy = (13)
0
= _Z]'—khj(x)v hy +rp q(yt )W Byk
JEY

The last term with I'(y) in (13) depends on solution y; and therefore generalizes the
classical Riemannian covariant derivative. The invariance of (13) with respect to (z) — (z')
transformations is obvious, for transformations in image (y) — (') one should argue like in
(12 e 17

Using variations W7y, we can now write invariant representations of semigroup’s deriva-
tives:

THEOREM 2. The covariant derivatives of function and its evolution are related via new type
variations by

VERf(m) =) o BV s DS N i Wt (14)

d1U...Uds=7

Here V3 = Vi ..V§_ for vy = {ki,....ka}.

Proof. This representation is easily verified recurrently. Indeed, suppose it is true for all
|7| < n, then, similar to (8), one should consider

ViVER f(z) = ViR f(z) — Y T(2)V3, _ Pf(),
JEY

substitute here expressions (14), add and subtract I'(y) to form the high order covariant

derivatives of f, redenote summation indices and come to the representation (14) for
VEVE RO
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gularit yp

2. Recurrent form of the high order variational equations.

Further step will be to find the equation on high order variations. Differentiating (3) on
initial data = we have
oy™ 0 - 0
) = (o ATW)IW F (5o A (y) (15)
The problem is to find recurrent representation for high order variational equations.

To proceed further we need some generalization of Definition 1 from process y¥ to tensors
of (z) and (y¥) coordinates. -

J

DEFINITION 3. Object ug’;‘;} forms a mired tensor with respect to the coordinate changes
(x) = (2') and (¢) — (') iff its coordinates

(1;(1} i1...0p/ @1 cenCtr

©(i18) = Yiy..da/Br...Bs

form T?YM tensor on multiindezes (i) = (iy,...,1,), (j) = (1, .-y Jq) with respect to the local
coordinates (z¥) and form T™*M tensor on multiindezes (o), (8) with respect to the local
coordinates (¢™).

Now let us suppose that the new (¢™) coordinates of the mixed tensor depend in effective
way on the coordinates (z¥). A simple example was already provided before by stochastic

dy"™(z,1)

k
to the coordinates y™(x,t) of process y and gowctor on index k in coordinate vicinity
(). Another object of this type is superposition u?}}(yt) the change of coordinates at x
does not influence its values, but the choice of coordinate vicinity for y evokes the tensorial
transformation law.

An analogue of Definition 1 for mixed tensors provides

flow z — y¥, when the first order variation was a vector on index m with respect

DEFINITION 4. Covariant (z)-derivative of the mized tensor is defined by

z, (i) _ (1/a) u/Dls=n _ h (i/a)
Vit 5 = &rk ugrm + D Tea@ugn ™ = D T @ugs),,+ (16)
se(1) s€(J)
Ld
D fti (i/a)] aacg ‘} (!z’(x) 00 -
+ 2 Llsle@)uim™ 55— 2T, UG /B)o=1 Gt (0
pe(a) PE(B)

Line (16) corresponds to the covariant derivative on (z*) coordinates, additional line
(17) makes the resulting expression to be tensor with respect to the coordinates (¢™). One
may also note that the connection symbols above depend on different parameters and the

. o seean &
additional Jacobians a—@ are required in line (17).
X
The tensorial character of covariant (z)-derivative is easily checked, like before.

THEOREM 5. Covariant (x)-derivative defines a tensor of higher valence, i.e. the mized
tensor law holds
Viu (ifa) _ 63" c.’9.’£(I 61, 8¢(‘“) 8&5(3! (g Ja')
kUGi/8) = dzk 9z §z(@) do@) Gl Y180

|
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Proof is an easy application of the transformation law of connection, e.g. [7].
An important property of covariant (x)-derivative is that for the superposition one has

chain rule 90
T 43 o} @
Viug) (6(2) = (Veu(s) (8(a))m— (18)

for tensor ugg)} on manifold M. Proof of this fact follows from the very definitions.

After we developed a concept of mixed tensor and its covariant (z)-derivative, we can
further transform equation on the first variation (15). By adding and subtracting the terms
with I'(y) to single out the covariant (z)-derivative of vector fields Aq(y), Aa(y) on image
coordinates (y) we have from (15)

aym BT 8yq o . ay
agF) = (V4T W) - T W) AL 5 )W + (WRAT (4) = T, (W) A§ =)t

Noting that the terms near connection contain the differential of process y we finally get
equation on first variation

oy™ Ay
(ka tidia q(y)a

o(

P
8y? + WE(A™ (y))dW® + WE(A™(y))dt (19)

Arose an additional geometric interpretation in favor of new type variations: up to the
parallel transition term with I'(y) the increments of first order variation are determined by
covariant (x)-derivatives of coefficients. We take this observation as the recurrence base in
the search for high order variational equations.

THEOREM 6. Suppose that the equation on covariant (x)-variation Wiy™, |y| > 1 is written
in form :
o(Wiy™) = =T, (WiyP)dy? + M, ";0W" + NTdt (20)
Then the neat order variation WV y™ = W7 .\ y™ fulfills relation
¢

N r m m xT & 1m i 8U e
O(V‘»U{k}y ) = _Fp q(wqu{k}yp)f)yq %+ Rp gq(wqyp)@éyq‘i' (21)

+(WEM,™EW* + (WIN™)dt

Here R forms (1,3) curvature tensor with components

or 12 6F1 4
or? ox3

where for simplicity we only point the positions of corresponding indexes.

R1234 = e F133r324 rlj4rj23 (22)

REMARK 7. Up-to-date there is formed a set of qualitively different approaches to the
construction and study of diffusion equations on manifolds. The main attention was to make
consistent the geometrical structures of manifold with the second order differentials, that
arise in Ito formula for coordinate changes.

Not complete list of known approaches includes, in particular the purely stochastic, that
are based on the definition of diffusion in a consistent with geometry way by implementation

8
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of Stratonovich integrals [16, 17, 18] or more complicate description of diffusion via It6
equations in local coordinates [10, 13]|. In the second case arise special It6 bundles of
nontensorial fields, related with diffusion coefficients, and, to make the picture consistent, a
special attention should be devoted to the normal charts, generated by exponential mappings.

Other, more geometric, approaches are related, for example, with the raise of diffusion
from manifold M to the orthoframe bundle O(M) over it, e.g. [11, 21|; with the consideration
of manifold as embedded into IR? of higher dimension. e.g. [15, 24]; with interesting interpre-
tation of Ito differential and diffusion equations as defined on the bundle of second order
differential operators |25, 14]; putting forward It6 developments of equations via parallel
transitions of orthoframes [12]; making more stress on properties of associated transitional
probabilities [26], etc. Of course, one can also mention different peculiarities, related with
many other infinite-dimensional models, e.g. |9, 15].

The procedure of making the correct correspondence between geometry and stochastics
was successful in all cases. However, further question of consistency with the problematic of
differential geometry, namely:

how the geometrically invariant differentials are constructed from invariant objects

remained in shadow. The attempts to consider the traditional derivatives in directions of
vector fields or more advanced covariant and stochastic derivatives, e.g. [10, 11, 13, 21],
missed an important property of geometric invariance with respect to the diffusion process
yy and inevitably led to the growing number of noninvariant terms in the corresponding
equations. Therefore it was principally hard to trace the influence of curvature in regular
properties.

Above we provided a geometrically invariant definition of new type variation W.,yy. The
statement of the present Theorem is in favor of this definition, namely we see that the
additional term with I'(y) in the Definition 4 of the new invariant derivative compactificates
these non-invariant terms to the compact expressions with curvature. So it becomes possible
to find the influence of curvature and nonlinearities of diffusion equation on the any order
regularity properties.

Finally, let us remark that the more general discussion of the invariance of differentiation
operations with respect to the process y¥ one may find in [5], where it is applied to the
problem of stochastic regularity.

Proof. For simplicity we omit, where possible the dependence of connection I' on variable
y, however the dependence on x is always displayed precisely.

At first step we simply substitute the definition of covariant (x)-derivative under Strato-

novich integral

5 YT, m Y WL, M m 8yp L0 + h 5 m
S(WEV™) = [ H{EVH "+ W)z Vit = X I @ V5, o™} (28)

s€7

For the first term in (23) we substitute the inductive assumption (20) and, after differentiation
of integral, obtain

(23), = f 5(32 [ (—T,™ (W22)5y" + M,"6W' + N™dt}) =

31“::”5; oy
oyt dzk

; _ 0y?
(360" - [ TV - (24)
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/ T OTWTYP) 5y + f {BEM, "W + 32 N™dr) (25)

For the second and third terms in brackets in (23) we use the inductive assumption (20)

@)= (120805 + [l + [ SEwmmar,n) =
o f i L{ T,9 (W2y)Sy® + M,"6W* + Nidt}+ (26)
oy 61; ay z,.q arpﬂ; e ;
+ [ remns St + o (T30 00 (27)

iR / T (@) {-T,m () (V2 _ Pyt + M, Wi+ N _di}  (28)

=y

Now we transform the first expression in (25) to the covariant (z)-derivative

@25 = - [ T, Vz)o = - f (VW) 5y +

m 61 oy 2
/rp qrt‘pnaJk W/ )O 4 Z/ ;pq L s (W-ﬂ hy) y (29)

8EY

Expressions (24;) and (27;), (293) and (28,) contract and the second and third terms in
(25), (26) and (28) give the covariant (z)-derivatives of M and N coefficients. We write the
remaining terms, redenoting indexes and gathering terms with derivatives OI' and second
powers I['(y)I'(y) of connection

(23) = — f ™ (WEIWZyP) 5y + f (WM, 26W' + WINTdt}+

or T
+ [ S wsan = T g, ) - raGW) (60

But the expression in brackets {...} gives the curvature (22), so we conclude the statement.

O

3. Symmetries of variational equations and differential of norm of variation.
Similar to [2]-[7], we are going to use the symmetry of variational equations to find a
set of nonlinear estimates on variations. Due to (19) the recurrence base for the definition
of high order variational systems (20) is given by
M = VAT (v)), Ny = VAT ()

Using (18) and recurrent properties (21) we can determine the nonlinear symmetries of
variational equations. Because

(VYVRGD = o 30 (VG (Ve (W) (31)

10
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the n'" order variation in the Lh.s. of (20) is proportional to the n™ power of first variation

in the r.h.s., or

Introduce nonlinear expression that reflects this symmetry
% ,
t) = Ep; (B (57, )W)y || (33)
j=1

and gives some nonlinear norm on the a priori smoothness of process y with respect to the
initial data. Here 2 € M is some fixed point, p(z,y) is geodesic distance between points z, v,
norm of variation is defined by

J
IOV 1P = gmn(97) [ | 6% @) V5, v V5, 44" (34)
8=1

and represents invariant (because the variations (W*)/yf form mixed tensors, one more
argument in their favor!). Let us henceforth use a short notation

3

9615 = Hg'ésks fOl‘ &= {51 '-'sis}a 5 — {kb ‘kﬁ}

s=1

for multi-indexes ¢, 4.

The next lemma prepares the differential of norm ||(W*)Jy7||?, necessary for the nonli-
near estimates on expression (33). First recall that by (20)-(21) the general form of variational
equations looks like

§(X™) = —T ™ X26y* + M, 6W*= + N™dt (35)
with coefficients M.",, NI*, recurrently determined in (21).

LEMMA 8. The differential of norm of variational process X" (35) has form

97(x) { gmn(XT M., + XTM 3 )W+

v @

1
+ Gl X NE + XT N o M. M, 5 )dt + 2gmn(YmP” X2PH il } (36)
Ezpressions P are recurrently related by
P = Vi(Va, A7) + R AL AL (Vi) (37)
Py = VP + 2R, M P, (Wiy") AL+
+(V.R," ) XE(Viy") ALAS + R} XP(WEAL) AL+ (38)

P {g
+R,", X2 (Viy) (Va, Aa)

Proof. Taking the Stratonovich differential we have
SIX11* = 0(gmn(y)g™ (2)XJ"XT) =

11
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= ¢ (@) [X] X7 09mn(y) + Gmn(XJ'OX] + X[6XT") ]
Now we use Vg, = 0 in form

- Ot : =
8gmn(y) = a;"oyf = (grnL W+ gL i) 0y

to reduce the connection coefficients after substitution of 4.X" from (35). We get
SIXII? = g7 (z) { gma(X" M., + Xe M)W + g (XT'NZ + XCNT)dt } =
= §7() { gmn(XT M, ", + X2 M7 ) AW+
rm 1 T AT 1 T n T m (0 4
+9mn (X3 NZ + XD N )dt + §d[gmﬂ_(5\q‘, M5+ X M 0), WP} (39)

where we changed from Stratonovich to Ito differentials, [X, Y] denotes the quadratic vari-
ation of processes X and Y.
It remains to calculate the quadratic variation. For simplicity we omit the factor ¢7¢(z)
d[gmn (XM, + XPM,™), W] = (X™M,™, + XPM, ™ )d[gmn(y), W)+

E 41

g (XM, ", W) + XM, T, W)+

+9mn (M, " d[XT', W] + M, d[ X, W*]) = (40)
= (XI'M.", + XM, ") [ghal i m + gmal ") AL dt+
+Gmn (XM, ", W] + X2 d[M,", W)+
+ Gmn M. " (=T, XP AL + M )dt+
+Gmn M, (—T " XP AL + M,",)dt

where we used property Vg, = 0 and substituted differentials (35). Contracting the
connections we get finally

G (XM, + XPM,™), WO = 205 M, ™ M, " dt+

4 gma X2(d[M, ™, W] + T, M., ALdt)+ (41)

+gmaX™(d[M,", WO +T " M.? Aldt)

Introduce notation for the terms in round brackets in (41)

PPdt = d[M,™, W°] + T,™ M.?, A%dt (42)

¥ @ ¥ oo

and find the recurrent way to calculate expression PJ".
We use (73) to obtain the necessary relations

P’}TJ{k}dt = d[ﬂ ’}‘E‘{k} al ‘{,1;0:] + I‘Pn;'ﬁ'!‘?’a{k} a“igtdt =
= d[WEM,™, W*] + T,™ (WEM,?,) ALdt+ (43)
(R, XP(WEyY) AT, W + T, (R, X (WEy) AL) Al dt (44)

The last line (44) appears only for v # (), therefore we first calculate line (43),

12
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1. Transformation of line (43). First we substitute the definition of covariant (z)-
derivative

(43) = d[Bs M, + T, "M 2 Wiy? — Y Tl () M,™ . W]+ (45)
sEY

+T, % (OF M, + T M (W) = 3 T (z)M P ) Aldt (46)
sEY

For the first term in (45) we take the differentiation outside and form covariant (z)-
derivative by adding and subtracting necessary terms

d[oFM,™ W) = 8 (d[ M., W) =

7 @ v @

Vi (d[M,", W) — T,d[M, P, WeIWiy? + > T ()d[M,]"

Y ol

L (47)
SEY

The second and third terms in (45) are calculated directly

(45)243 = M., (Wyy?)d[T,™, W] + T," M.?, d[Wiy?, W]+

+T, (ViM% W — ) T,k (z)dM,™, ., W] (48)

sEY

Noting that two terms in (48) are compensated by two terms on (47) and substituting the
differential of Wiy? from (35) we have for line (45)

(45) = (47) + (48) = Wy (d[M 7, W*])+ (49)
TP z, g arPQ £ m P Z,.9% At q ;
+M. P (Wiy9) Gyt Aadt + T, M, (=T (Vi) AL + M2t (50)

For the first term in (46) we take the derivative 9 outside of all terms and form W~
derivative by adding and subtracting necessary terms

(46), = OF (T, M.? A%)dt — [¢T,™ (y)| M, P, ALdt—

T ot T et

=L, M2, (0FAL)dt = V(T oM ) AL dt—

i |
—T(T, M P AD VY de + ) T2 ()T, M0 AL)dt— (51)
s€7Y
ar P q m P < AT s
5 — L4 (Wiy )M P, A%dt — T, M, (OF AL )dt (52)

Note first that term (46); is compensated by term (51),. Because by (73)

M2 = WiAl(y) = 87A%(y) + ;% AL (Wiyf)

N a1
we have that (50),+(50); compensate (52),. Collecting all remaining terms we have
(43) = (45) + (46) = Vi P"dt+
aT,m  or,m

+{ v 8ypfq +T,"T b, — T, A Y0P (WEyt) Aldt = 53

13
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={ViP" + R}, M7, (Viy") AL }dt (54)

where terms in line (53) appear from (50),, (52);, (46): and (51);.
Because for recurrence base v = () terms in (44) do not appear, it remains to find 2
to finish recurrence base (37). By definitions (72), (42) we have

Pidt = d[AT(y), W] + T, AL At =
a m
[a £

i.e. from (54) and (55) follows (37).
2. Transformation of line (44). Taking the first term in (44) we obtain

+T AL ALdL = (V,AT) - Abdt = (V4 A™)dt (55)

(44)1 B d[Rpﬂ}qxg(ViyE)"%g? I‘Va] =

_9
apfx (Wiy)ALALdt + R, (Wiyh) AL[XE, WO+ (56)
TP AG £ ' N 34 4
+R, G X2 ALY, W + R} XE(Wiy )81_; Aldt = (57)

oOR ™

i apﬁx (Wiy") AL AS di+ (58)
+R,, (Viy ) AL-T P XL AT + M P |dt+ (59)
+R," XPAL - r.f,.(vgy*')Ai + M.t Jdi+ (60)
+R, 5, XE(ViyY)[V,A4L — T %, AR A% dt (61)

where we transformed to the W* derwatn-'es, by changing (56), to (59), term (57); to (60).
We also transformed the partial derivative of 4, in (57); to the covariant one.
Collecting together above expressions and (44), we have

aR m
(44) = {ﬁ:q N rpthhn}’q + I—.hﬂ;Rphfq_ (62)
—L/ R}, — TR Y X (Wiyt) AL A% di+ (63)
+R, MP (Wiy*) ALdt + R XP(WEAL) ALdt+ (64)
+R,, X2(Wiy*)(V,AL) AL dt (65)

Here (64); =(59)2, (64)2 =(60), and (65)=(61);. Terms in brackets in (62)-(63) appear
correspondingly from (58), (59)1, (44)s, (60);, (61)2 and form the covariant derivative of the
curvature tensor.

We get finally

(44)/dt = (VuR,"3) X2(WEy") ALAL + R, M., (Viy) AL+

R, eqi"(V’”’ A AL + R X2 (Viy")(V 4, AL)
that together with (54) leads to (38).
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4. Nonlinear estimate on new type variations.

Using Lemma 8 we can find nonlinear estimates on variations.
The following theorem provides necessary conditions for quasi-contractive estimate on
r». generalizing results of [2]-|7] to the noncompact manifold setting. Introduce notation

d
— 1
Ay = Ao+ Z V4, Aa (66)

THEOREM 9. Suppose that the following conditions hold

e dissipativity: 3z € M such that VC € R' 3K, € R' such thatVz € M

= ﬁ;(m),vm -

? < Ko(1+ p(x, 2)) (67)

a=1

e differential coercitivity: VC,C’' € R' 3K € IR" such thatVz,y € M

d d
< VA[hl,h > +C D" [VA[R]? +C" Y < R(Aa, h)Aa,

a=1 a=1

> (68)

Notation VA[h] = h'V;A means covariant directional derivative, < -,- > and | - |
corresponding Riemannian scalar product and norm, and

[R(A,B)C]™ = R, A'B/C*

i gk
denotes curvature opemtor

e nonlinear behaviour of coefficients and curvature: for any n there are constants
ke such that forall j=1,..,n andVz e M

(V) Ao(@)]| < (1 + pla, 2))Ke
(VY Aa(@)]| < (1 + pla, 2))Ke (69)
(VY R@)| < (1+ plz, 2))K#

Then there is some k = k(ko, ko, kg) such that if monotone polynomials p; > 1 in (33) are
hierarchied by

Viitde=i<n [+ 2K < [py Py, (P (70)
then the nonlinear estimate on variations holds

3Ky V120 my,t) < "K'y (y,0) (71)

15
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REMARK 10. Conditions (67)-(68) generalize the classical Krylov - Rosovskii - Pardoux
conditions [23, 19| from the linear base space to manifold, here arises the additional term
with curvature.

Proof. Step 1. Structure of the differential of norm ||(W¥)iy?||>.
To simplify further notations, let us introduce an additional process, that formally
corresponds to the index v = () in (35)

SXJ = —T," XEoy" + ATOW® + ADdt

Then the relations of coefficients M, N for the processes X" could be written in the following
form

1. recurrence base:
Mg, = AZ(yy), Ny' = Ag(v7) (72)

2. recurrence step by (19) for v = () and (21) for v # 0

Milliy « =\ WEM + BT, X3(Viy) g, for y 0 ‘

T AT
Nm { Wk‘\ 3 forﬁ}/ 0 (74)

SYyUu{k) = .’.r:j'\.?‘m p qup(W )Ag, for = 3& @

Therefore, due to (18), (31) and (72)-(74), we have that coefficients of the high order
variational equations have form

M =VIAMWIH+ Y . N N (75)

B1U.UBs=7, 522
=V VI A+ ) K 5 (VY. V5Y)
B1U...UBs=, 522

with coefficients K', K", depending on Ay, A,, R and their covariant derivatives. Moreover,
the dependence of K, 5. (V73 v, ..., W y) on lower order variations Wy manifests symmet-
ries (32).

Let now i = 1 and X" = W{y™, then by (37) and (18)

By = Wi(Va, A () + R AL ALV iy

= VIV, A" - Wiy + R(Aq, Viy) Ay

Therefore, because in (38) Py = VP + ... the high order coefficients permit represen-
tation

PP =V Va4, A7 - V' + R(Aa, Vi) Aa+ D Kp.5.(V59, .., V5y)

BiU.UBe=7y, s>2

with symmetries (32) in K3, g, terms, depending on Ay, A,, R and their covariant deriva-
tives.

16
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Therefore from (36) the differential of norm admits representation

dI(W2)iyFl? = 2 < (W)'y, ViA[(W)iy] > dIV® + {2 < (W)iy, ViAy(W)iy] > +

+ é IV A[(W)'y] ||? + é < R(Aa, (W)'y) Ag, (W)'y > }di+

+ E < (Vﬂﬂ(j, {I\IP}I,II'JS,&((W)ij, ey (W)sz)d11'(1+
Jit.tjs=t, 522

(76)

i.e. the coercitivity condition arises in the principal part. Like before the coefficients K*, K?
depend on covariant derivatives of Ay, A,, R and display symmetry (32).

Step 2. Separation of the principal part. Writing the differential of one terms in nonlinear
expression (33) we have by Ito formula (temporarily 2¢g = m/i, p = p;)
h(t) = Ep(p* (7, )1 (W) iyF ]2 = h(0) + E [y {p(p* (42, 2)) dIl (W*)iyZ||2+
+I(W*) w5 11*2dp(p (45, 2)) + 3dlp(p*(y3, 2)), (V)5 1] } =

t
= h(0) + {E{P(PQ (42, 2)) (2q]| (W) 92|20 Dd|| (W7) g2 || 2+
+q(2g — 2)[|(W®)i 2|2 2d[|| (W) iyZ |2, | (W*) 2|12+

HIVO) PP (0° (4F, 2))dp® (u7, 2) + %p”(ﬁ(yf: 2))d[p*(yi, 2), p*(y%, 2)] )+ (78)

+%P'(,02(y§= NNy IV do? (55, 2), (W) 'y 11%] } (79)

By (76) terms in (77) give the coercitivity condition (68) in principal part with some constants
and additional terms with lower order variations

t
(77) < KE [ p(P*(y7, 2)) || (W) 7 |29~V {coercitivity } oo (W) 'yf, (W) 'yf)dt+
0

Ty B [0 p(P*(u5, )W) G129 < (W)iy, Kj,,...5. (W) Py, .., (W)Poy) > dt (80)

Ntetie=t, 522
with coefficients K as before.
Term in (78) is transformed by monotonicity and polynomiality of p (3C : p"(u)u <
Cp'(u)), index ' means that the corresponding operators act on the first coordinate

1

fE||(W)*'yI|2q{P’(pz(yg 2))dp*(y, z) + %p”(pz(y; 2))d[p*(y, 2), p*(y, 2)] =

1 d
= fEII(V)"szq{p’(ﬁ(y,z))Lpo(y,z) i %p”(p%y, zJJPQ(%Z)p—Qé-_Z—) D (ALP*(y, 2))?}dt <

17
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t

< [ E[l(W)'y 125 (225, 2){L' P (3. 2) +

0

&
Py, 2)

d
D (ALP°(y, 2) )Yt (81)

after that work results of [6] about the optimal estimates on general second order operators
on metric functions.

THEOREM 11. ([6]). Suppose that the generalized dissipativity and coercitivity conditions
(67)-(68) hold.
Then there is constant K such that

L'p*(z,y) < K(1+ p*(z,y)) (82)
Moreover ¥ C 3 K¢ such that
d
(‘431 g 'T"'.! 2 -
L'p*(z,y) +CZM < Ke(1+ p*(,y)) (83)

P*(z,y)

a=1

By (75) terms (79) are estimated by

P'(p*) 1(W) g2 Vd[p?, [ (W) '] | <

: d e
<HAN@yyy e
AR P NTAL) ]+ Y Ky (0, (W) (84

Jitetjs, 522
The first term is added to (81), after that (83) works. The second term is combined with
terms in (77), (80), leading to the coercitivity condition with modified constants.
Therefore, after the application of coercitivity and dissipativity assumptions (67)-(68),
we come to estimate

h(t) = Bp(o? (4 2) (V)5 | < h(0) + C fo h(t)dt-+

t

Y BRI K, (V) (9 (9) )

rttds, 822

where coefficient K’ reflects symmetry (32) and can depend quadratically on lower order
variations for the case of (84).

Step 3. Estimation of the rest terms with the use of nonlinear symmetry (32).

Finally, in a similar to [2]-|7] way, we may apply nonlinear behaviour (69), hierarchy (70)
and symmetry (32) to deal with the rest terms. By inequality |29 'y| < |z]7/¢+ (¢—1)|y|*/q
we have fora=1,2

Ep(0*) | (W)iy|| 2TV Kiy...5 (W)iy; (W), o, (W)Poy) <

< Ep(p?) (1 + p)X|(W) gl | (W) gl | (W)oy|l* <

18
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< CEp||(W)'y[** + C'Ep(p?) (1 + p) 2K || (V)7 y|/20...|| (W) oy ||

The first term equals h(s), for the last we recall that 2¢ = m/i (33), so there is
representation . _ thel = il
e e e, 0 = (el dsit. Mg mikdensads

Then the nonlinear hierarchies of polynomials (70) give
pi(p®)(1+ g2 | (W) Py | (W) y ™ <
< (i () N(W) Ry ™05y, (%) 1| (W) ey || el <
< L (P TPl 4+ 2 () (W ey
i.e. the differential of each term in (33) is estimated by terms of (33) itself

t

hi(t) = Ep;(p*) ||(W)'y|** < hi(0) + const/rn(y, s)ds
0

Application of Gronwall-Bellmann inequality leads to (71). [J

Similar to [2]-[7] under conditions on coefficients of diffusion equation, that lead to the a
priori estimate on variations, we also have C'* regularity of process y{ and regular properties
of diffusion semigroup. The next theorem announces the result.

THEOREM 12. Under conditions (67)-(69) process yf is C*° differentiable with respect to the
initial data. Its variations (W7*)y? represent strong solutions to variational systems (20)-(21).

Moreover, there is k such that for a family qo.q1,....qn > 1 of monotone functions of
polynomial behaviour, that fulfill

Vi>1 q(b)(1+b)% < gud) Yb>0 (85)

the space Cg (M), consisting of n-times continuously covariantly differentiable functions with
a finite norm

1(V*) f (@)l
(M) = Max sup ————— (86)
”fH(q i 1=0,...,n .‘I‘E}{f Qi(pQ(xa z))
is preserved under the action of semigroup
Vi>0 P,:Ci(M)— Cz(M)
Furthermore, there are constants K, M such that the quasi-contractive estimate holds
VfeC;(M) |Pf] cam) S KeMtHfHC;(M) (87)

Proof will appear in [8].
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